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Abstract

Among the space-curve singularities of the simplest type are the so called wedges D = C ∨ L ,
consisting of a plane-curve singularity C together with a line L transverse to the plane of C .
In this note we describe the discriminant of D in terms of C . In particular, we show that the
complement of the discriminant of D is a K (π, 1) if the complement of the discriminant of C
is a K (π, 1). We also give a formula for the multiplicity of the discriminant of C ∨ L .

1. Introduction

Let D ⊂ C
3, 0 be a (reduced) space-curve singularity and let π : D −→ B be its semi-universal

deformation. As D is a Cohen–Macaulay subspace of codimension two, B is a smooth space of
dimension τ := dim T 1

D [9]. Let � ⊂ B be the discriminant of π , that is, the locus over which the
fibres are singular. Apart from the fact that � is a free divisor [10], not much seems to be known
about its structure. At least for the list of simple space-curve singularities [5], one would like to
have answers to the following basic questions.

1. How many components does � have, and what are their multiplicities?

2. What can one say about the fundamental group of B \ � and its monodromy action on the
cohomology H1(F) of the Milnor fibre F?

3. Is B\� a K (π, 1)-space? Surprisingly often (see for example [3,4,13]), the complement of the
discriminant in the base space of a versal deformation has this very special property, although
little is known in general.

4. Is there a natural geometrical description of � for the simplest space-curve singularities?
For simple hypersurface singularities, the classical description of the discriminant in terms of
Coxeter groups, due to Arnold and Brieskorn, provides the basis for the proof of the K (π, 1)

property.

The simplest type of space curve which is not a complete intersection is obtained from a plane-curve
singularity C by wedging it with a line L transverse to the plane of C , Fig. 1. We write D = C ∨ L .
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Fig. 1

∆1

∆2

Fig. 2

For curves of this type we are able to reduce questions 1–4 above to questions about the plane curve
C .

Let C −→ BC be the semi-universal deformation of C , and let C� be the union of all singular
fibres. Let D −→ BD be the semi-universal deformation of D and let �D ⊂ BD be its discriminant.
Our results are based on the following theorem, which is proved in Section 3.

THEOREM 1.1 Let D = C ∨ L. The discriminant �D is the union of a smooth hypersurface �1 and
a hypersurface �2 isomorphic to C� × (C, 0). The hypersurfaces �1 and �2 meet transversely,
Fig. 2.

We obtain the following corollaries.

COROLLARY 1.2 �D has two irreducible components, unless C is an A1 singularity, in which case
�D is the normal crossing of three smooth components.
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COROLLARY 1.3 The multiplicity of the discriminant �D is

mult(�D) = µ(C) + mult(C).

Let C∗ = C \ C� be the union of all smooth fibres.

COROLLARY 1.4

1. BD \ �D � C
∗ × C∗.

2. π1(BD \ �D) = Z × π1(C∗) and πk(BD \ �D) = πk(C∗) for k � 2.

3. In particular, if BC \ �C is a K (π, 1)-space, then also BD \ �D is a K (π, 1)-space.

REMARK 1.5 Another consequence of 1.1 is that C� is a free divisor, since it is known [10] that �D

itself is free. In fact it turns out (and is not hard to show) that the same goes for the semi-universal
deformation of any ICIS curve singularity: the part of the total space lying over the discriminant is
a free divisor.

2. Preliminaries

If C is given by f (x, y) = 0, then D := C ∨ L is described by the ideal (x, y) ∩ ( f (x, y), z) ⊂
C[[x, y, z]]. This intersection is readily seen to be equal to ( f (x, y), zx, zy). When we write f in
the form f = Ax − By, A, B ∈ C[[x, y]], then we get these equations as 2×2 minors of the matrix

M :=
(

z A B
0 y x

)
.

The total space D of the miniversal deformation of D is defined by the minors of a matrix

M̃(s1, . . . , sτ ) :=
(

z Ã B̃
s1 y x

)

which reduces to the matrix M when s1 = · · · = sτ = 0 (see [9]). Let B0 ⊂ BD be the subspace
defined by s1 = 0, and consider the restriction of the miniversal family to B0:

D0 ↪→ D
↓ ↓

B0 ↪→ BD.

For each point s ∈ B0, the curve Ds consists of the line L = {(0, 0, z)|z ∈ C} together with the
plane curve Cs defined by the determinant of the matrix

(
As Bs

y x

)

(where As(x, y) = Ã(x, y, s2, . . . , sτ ) and similarly for B) which meets L at (0, 0, 0), Fig. 3.
So there is a decomposition

D0 = (B0 × L) ∪ E0,
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Fig. 3 A typical curve Ds , for s ∈ B0.

where the fibre of E0 over s ∈ B0 is Cs . The intersection of the two components of D0 projects
isomorphically to the base B0, and hence the diagram

(B0 × L) ∩ E0

�
�������������

� � �� E0

��
B0

(1)

is a deformation with section of the plane curve C . We will show that as such it is miniversal.
Let us clarify these terms. Let X be a germ of analytic space, and let π : X → B be a deformation

of X with section d : B → X. Then π : X → B with its section d is versal as a deformation with

section if for every deformation XS
πS−→ S with section dS : S → XS , there exists a map k : S → B

and a fibre square

XS
K ��

πS

��

X

π

��
S

k �� B

with the additional property that K ◦ dS = d ◦ k.
A deformation of the plane-curve germ C with section can be obtained as follows. Start with a

miniversal deformation C
p−→ BC of C , and pull it back over itself:

C ×BC C

p1

��

p2 �� C

p

��
C

p �� BC

(where p1 and p2 are the Cartesian projections). The deformation C ×BC C −→ C has a section

C
d−→ C ×BC C given by the diagonal embedding.
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LEMMA 2.1 C ×BC C −→ C with its section d is miniversal as a deformation with section.

Proof. For simplicity of notation we write BC as B. Let CS
πS−→ S be a deformation of C with

section dS : S → CS . As C → B is versal, the deformation πS is induced by pulling back C → B
over some map j : S → B. Thus we may assume that CS = C ×B S. The section dS now has
the form dS(s) = (c(s), s). Let J denote the (Cartesian) projection CS → C. By pulling back
C ×B C → C over J ◦ dS , we obtain the following diagram.

C ×B C
p2 ��

p1

��

C

p

��

(C ×B C) ×C S

��������������

��

C
p �� B

S

�����������������
dS

�� CS

J

��

πS
�� S

j

��

Now that we have identified CS with C ×B S, it is straightforward to check that we can identify
C ×B C ×C S with CS , and the induced section d ◦ J ◦ dS (which lands naturally in C ×B C ×C S)
with dS . We advise the reader to make the necessary tautological calculation.

This proves versality; thus, we have a versal deformation with section, whose base space is
smooth and has dimension one greater than the dimension of the miniversal base space B of C
without section. The space of first-order deformations with section is m/(( f ) + m J f ) (where m is
the maximal ideal and f the defining equation), which has dimension τ + 1. Miniversality follows.

LEMMA 2.2 The deformation with Section (1) is miniversal as deformation of C with section.

Proof. By Lemma 2.1, (1) is isomorphic to a deformation induced from

C

�
������������

� � d �� C ×BC C

��
C

(2)

by a map φ1 : B0 → C. To any deformation of C with section we associate a canonical deformation
of C ∨ L: to each curve with marked point we associate the same curve wedged with a parallel
translate of L passing through the marked point. In particular, we can apply this to the family (2).
Let us call the total space of this family D1. As a deformation of D = C∨L , D1 −→ C is equivalent
to one induced from the miniversal deformation D −→ BD , and thus we have an inducing map of
base spaces φ2 : C −→ BD . We summarize this situation with a diagram.

D0 ��

��

D1 ��

��

D

��
B0

φ1 �� C
φ2 �� BD
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Both squares are pull-back diagrams, and thus the outer rectangle is also. There is another pull-
back diagram with the same four corners.

D0
� � ��

��

D

��
B0

� � �� BD

By miniversality of D −→ BD , these two diagrams must be isomorphic. That is, there is a diagram

where the arrows ψ : BD −→ BD and D −→ D are isomorphisms. Replacing φ2 by ψ ◦φ2 ◦φ1, we
may therefore assume that φ2 maps C to B0. This implies that D1 → C is induced from D0 → B0
by φ2, as deformations of C ∨ L . Regarding these as deformations of C with section, we see that
the versal family (2) is induced from (1). It follows that (1) is versal as a deformation with section.
However, it must even be miniversal as such: if not, then over some smooth curve in B0 we have
a trivial deformation of C with section, which amounts to a trivial deformation of C ∨ L . This
contradicts minimality of the deformation D −→ BD .

Let �(B0) be the set of point s ∈ B0 such that the plane curve Cs ⊂ Ds is singular. Also, let C�

be the part of the total space of the deformation C −→ BC lying over the discriminant �C . Because
the families (1) and (2) are isomorphic, one reaches the following conclusion.

COROLLARY 2.3 B0 is isomorphic to C by an isomorphism taking �(B0) to C�.

3. Projecting the miniversal deformation

We define a map ρ : BD −→ B0 by ρ(s1, . . . , sτ ) = (0, s2, . . . , sτ ). This is covered by the map
ρ̄ : C

3 × BD −→ C
2 × B0 defined by ρ̄(x, y, z, s1, . . . , sτ ) = (x, y, s2, . . . , sτ ). Clearly ρ̄(Ds) is

the plane curve Cρ(s) defined by the determinant of the matrix

(
As Bs

y x

)
.

Geometrically, we can see the map ρ by projecting a fibre of the deformation D → BD from
(x, y, z)-space to (x, y)-space. The image is the fibre Cρ(s) of the deformation of C , minus a
closed disc containing the image of the asymptote. The size of the disc depends on the choice of
representatives of the Milnor fibration, but does not affect the topology of the image. In the ideal
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C

Ds

(s)

Fig. 4

case where the germ D and its versal deformation are weighted homogeneneous, and we take all of
C

3 as Milnor ball, then ρ̄(Ds) is precisely equal to Cρ(s) \ x∞. For the purpose of describing the
monodromy, it is convenient to imagine ourselves in this ideal situation.

Proof of Theorem 1.1. If s1 = 0, the curve Ds is singular; thus the hyperplane B0 = {s1 = 0} is a
component of the discriminant.

If s1 �= 0, Ds is singular if and only if Cρ(s) is singular. For suppose that Cρ(s) is non-singular.
Then A(0, 0, ρ(s)) and B(0, 0, ρ(s)) do not both vanish; if they did, the equation of Cρ(s) would
lie in the square of the maximal ideal at (0, 0), and Cρ(s) would be singular. It now follows that
ρ̄ induces an isomorphism Ds → Cρ(s) \ {(0, 0)}; the inverse to ρ̄ on Cρ(s) \ {(0, 0)} is given
by (x, y) �→ (x, y, z) with z = s1 A(x, y, ρ(s))/y = s1 B(x, y, ρ(s))/x , and there are no points
in Ds lying over (0, 0). Hence Ds is non-singular. Conversely, if Cρ(s) is singular at some point
(a, b) �= (0, 0) then by the above isomorphism, Ds is singular at the unique point lying over it.
Finally, if Cρ(s) is singular at (0, 0) then A(0, 0, ρ(s)) = B(0, 0, ρ(s)) = 0, and it follows that Ds

contains the line L as well as the lift of the curve Cρ(s), Fig. 4, and is thus singular where they meet.
We have shown that �D = B0 ∪ ρ−1(�(B0)). By Corollary 2.3, �(B0) � C�, and this completes
the proof.

We note that Theorem 1.1 implies in particular that

τ(D) = τ(C) + 2,
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where τ is the dimension of the miniversal base. (This is in accordance with a general formula for
τ(C1 ∨ C2), due to Jan Stevens [1].) The interpretation is as follows. The base space of C has
dimension τ(C). The miniversal base of deformations with section was C, so has one dimension
more. The last dimension comes from the parameter s1, which smoothes out the intersection point
of the line and the plane curve.

4. The complement of the discriminant

Proof of Corollary 1.4. The first statement of Corollary 1.4 is an obvious consequence of
Theorem 1.1, and the second is then immediate also.

For the third statement we use the long exact homotopy sequence associated to the fibration
C∗ → BC \ �C . This gives isomorphisms πk(C∗) � πk(BC \ �) for all k � 3 and a 5-term exact
sequence:

0 −→ π2(C∗) −→ π2(BC \ �) −→ π1(F) −→ π1(C∗) −→ π1(BC \ �) −→ 1.

In particular, if BC \ � is a K (π, 1)-space, then also BD \ �D is a K (π, 1)-space.
From Fig. 4 it is also clear that the Milnor fibre Ds of D is homeomorphic, via ρ, to the Milnor

fibre Cρ(s) of C , with the marked point removed. It follows that

µ(D) = µ(C) + 1.

Over the set BD \ �D we have the Milnor fibration D∗ −→ BD \ �D . Our description of the
discriminant allows us to give a geometrical description of the monodromy.

Let s0 be a base point in BD \ �D , and let b0 = ρ(s0) ∈ C. The factor Z of the fundamental
group π1(BD \�D, s0) = Z×π1(C∗) is generated by a loop σ1 which winds once around B0 while
holding s2, . . . , sτ constant. Join s0 to B0 by a line segment � in which only the first coordinate
varies. Along this segment, the fibre degenerates to a wedge of a line and a plane curve, thus
acquiring an A1 singularity. We transport the local Milnor fibre of this singularity into Ds by lifting
� to the Milnor fibration. The loop σ1 acts by monodromy on Ds0 , imparting the usual Dehn twist
to the local Milnor fibre of the A1 singularity. That is, a neighbourhood of the puncture in Ds is
diffeomorphic to a half-open cylinder; the geometric monodromy induced by σ1 twists the outer
(open) end of the cyclinder through 2π while leaving the closed end fixed.

We can identify {s0} × C
τ−1 with C and the complement of �D in {s0} × C

τ−1 with C∗, and this
identification extends to the respective fibrations; thus the monodromy action of the second factor
of π1(BD \ �D, d0) is the same as the monodromy action of π1(C∗, c0) on the punctured curve
Cb0 \ c0.

Elements of π1(C∗, c0) can be seen as lifts of elements in π1(BC \ �, b0), where b0 = p(c0).
It follows from the construction of the miniversal family in Lemma 2.1 that any lift of σ ∈
π1(BC \ �C , b0) acts in the same way on the homology of the fibre of C∗ ×B C∗ over c0 as
does σ on Cb0 (the two fibres are canonically the same). However, the action on the punctured
curve Cb0 \ c0 (which is diffeomorphic to the Milnor fibre Ds) is more complicated. In particular,
let σ be a loop in π1(Cb0 , c0) and i∗(σ ) its image in π1(C∗, c0). The fibre of C∗ ×B C∗ over
each point σ(t) is the same curve, Cb0 , but the puncture moves: over σ(t) it is precisely σ(t).
Thus the geometric monodromy at time t is a diffeomorphism of Cb0 fixing the boundary and
mapping c0 = σ(0) to σ(t). This diffeomorphism can be chosen to be the identity outside an
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c0

a T   (a)

Fig. 5

arbitrarily small neighbourhood of the curve σ . The homological monodromy Tσ of i∗(σ ) thus acts
on a ∈ H1(Cb0 \ c0; Z) by

a �→ a + (a · σ)r,

where r is the class of a small positively oriented loop around the puncture in Cb0 .

5. Components of the discriminant

If D is the union of the three coordinate axes (so its ideal is (xy, yz, zx)), then it has a 3-dimensional
deformation space. Its discriminant is the union of the three coordinate planes. This is in accordance
with our theorem: the component �1 is one of these planes, the part �2 consists of the union of
singular fibres of the miniversal deformation of the A1-singularity (so: two lines) crossed with a
trivial factor. We show that this case is exceptional.

PROPOSITION 5.1 If C is not the A1-singularity, then �2 is irreducible.

Proof. As �2 = C� × (C, 0), we have to show that C� is irreducible. Let F(x, y, s) = 0 be an
equation for C, and let h(s) = 0 be an equation for �. As h is irreducible, R := C[[x, y, s]]/(h) is
a domain. If C� is reducible, then (F) is reducible in R. That is, we can write F = F1 F2 + α · h.
Let γ (t) be a parametrized curve lying in �reg for t �= 0 and with γ (0) = 0. Then F(x, y, γ (t)) =
F1(x, y, γ (t))F2(x, y, γ (t)) describes, for t �= 0, a family of reducible plane curves with a
single node. By conservation of intersection multiplicity, the two curves {F1(x, y, 0) = 0} and
{F2(x, y, 0) = 0} have intersection multiplicity 1 at x = y = 0. It follows that both these curves
are smooth, and that they meet transversely. This proves the proposition.

Corollary 1.2 is an immediate consequence of the proposition.

6. Multiplicity of the discriminant

Proof of Corollary 1.3. The multiplicity of the discriminant is the intersection multiplicity of �D

with a general line S ⊂ BD . The restriction of D −→ BD to S is a surface singularity X , mapping
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to S. Moving S will result in a line S′ that intersects the discriminant �D in mult(�D) distinct
points. The surface X ′ over S′ will be the union of Milnor fibres FD of D, together with mult(�D)

fibres with a node. On the other hand, X ′ is a smoothing of X (since S′ meets �D transversely at
smooth points). A simple computation of Euler characteristics gives the relation

mult(�D) = χ(X ′) − 1 + β1(FD).

As the Milnor fibre FD is isomorphic to a Milnor fibre F of C minus one point, one has β1(FD) =
µ(C) + 1. The generic perturbation with parameter t of the matrix M will give a matrix

(
z A + αt B + βt
t y x

)
.

This matrix defines the surface X in (x, y, z, t)-space. Blowing up X at the origin introduces an
exceptional divisor isomorphic to the projectivised tangent cone of X . An easy calculation using the
matrix just given shows that this consists of a non-singular plane quadric together with a line (and
thus, the union of two rational curves). On the blown-up surface we find one singular point of type
Am−3, where m = mult(C). The minimal resolution of X thus has m − 3 + 2 components. As X is
rational, it has simultaneous resolution over the Artin component [12]. But X is Cohen–Macaulay
of embedding codimension 2, and thus has smooth base space. That is, the Artin component is
the whole base space of X . It follows that any smoothing of X is homotopy-equivalent to the
exceptional divisor of its minimal resolution, and thus has β1 = 0 and β2 equal to the number of
components in the exceptional divisor. We have seen that this number is mult(C) − 1. The theorem
follows.

REMARK The corollary just proved is equivalent to the statement that

mult(C�) = mult(�C ) + mult(C) − 1

because mult(�2) = mult(C�) and mult(�C ) = µ(C), as C is a hypersurface.
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